LAMP for Human African Trypanosomiasis: A Comparative Study of Detection Formats
نویسندگان
چکیده
Loop-mediated isothermal amplification (LAMP) is at the forefront of the search for innovative diagnostics for human African trypanosomiasis (HAT). Several simple endpoint detection methods have been developed for LAMP and here we compare four of these: (i) visualization of turbidity; (ii) addition of hydroxynaphthol blue before incubation; (iii) addition of calcein with MnCl₂ before incubation and (iv) addition of Quant-iT PicoGreen after incubation. These four methods were applied to four LAMP assays for the detection of human African trypanosomiasis, including two Trypanozoon specific and two Trypanosoma brucei rhodesiense specific reactions using DNA extracted from cryo-preserved procyclic form T. b. rhodesiense. A multi-observer study was performed to assess inter-observer reliability of two of these methods: hydroxynapthol blue and calcein with MnCl₂, using DNA prepared from blood samples stored on Whatman FTA cards. Results showed that hydroxynaphthol blue was the best of the compared methods for easy, inexpensive, accurate and reliable interpretation of LAMP assays for HAT. Hydroxynapthol blue generates a violet to sky blue colour change that was easy to see and was consistently interpreted by independent observers. Visible turbidity detection is not possible for all currently available HAT LAMP reactions; Quant-iT PicoGreen is expensive and addition of calcein with MnCl₂ adversely affects reaction sensitivity and was unpopular with several observers.
منابع مشابه
Loop-mediated isothermal amplification for detection of African trypanosomes.
While PCR is a method of choice for the detection of African trypanosomes in both humans and animals, the expense of this method negates its use as a diagnostic method for the detection of endemic trypanosomiasis in African countries. The loop-mediated isothermal amplification (LAMP) reaction is a method that amplifies DNA with high specificity, efficiency, and rapidity under isothermal conditi...
متن کاملLoop Mediated Isothermal Amplification for Detection of Trypanosoma brucei gambiense in Urine and Saliva Samples in Nonhuman Primate Model
Human African trypanosomiasis (HAT) is a vector-borne parasitic zoonotic disease. The disease caused by Trypanosoma brucei gambiense is the most prevalent in Africa. Early diagnosis is hampered by lack of sensitive diagnostic techniques. This study explored the potential of loop mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) in the detection of T. b. gambiense infe...
متن کاملLoop-Mediated Isothermal Amplification Test for Trypanosoma gambiense Group 1 with Stem Primers: A Molecular Xenomonitoring Test for Sleeping Sickness
The World Health Organization has targeted Human African Trypanosomiasis (HAT) for elimination by 2020 with zero incidence by 2030. To achieve and sustain this goal, accurate and easy-to-deploy diagnostic tests for Gambian trypanosomiasis which accounts for over 98% of reported cases will play a crucial role. Most needed will be tools for surveillance of pathogen in vectors (xenomonitoring) sin...
متن کاملDiagnostic Accuracy of Loopamp Trypanosoma brucei Detection Kit for Diagnosis of Human African Trypanosomiasis in Clinical Samples
BACKGROUND Molecular methods have great potential for sensitive parasite detection in the diagnosis of human African trypanosomiasis (HAT), but the requirements in terms of laboratory infrastructure limit their use to reference centres. A recently developed assay detects the Trypanozoon repetitive insertion mobile element (RIME) DNA under isothermal amplification conditions and has been transfo...
متن کاملAfrican trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA.
Control of human African trypanosomiasis (HAT) is dependent on accurate diagnosis and treatment of infected patients. However, sensitivities of tests in routine use are unsatisfactory, due to the characteristically low parasitaemias in naturally infected individuals. We have identified a conserved sequence in the repetitive insertion mobile element (RIME) of the sub-genus Trypanozoon and used i...
متن کامل